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A SIMPLIFIED METHOD OF ELASTIC-STABILITY
ANALYSIS FOR THIN CYLINDRICAL SHELLS
II - MODIFIED ECUILIBRIUM EQUATION

By S. B. Batdorf
SUMMARY

A modified form of Donnellls equation for the equilibrium of
thin cylindrical shells ls derived which is equivalent to Donnellls
eguation but has certain advantages in physical interpretetion and
in ease of solution, particularly in the case of shells having
clamped edges. The solution of this modified equation by means of
trigonometric seriss and its application to a number of problenms
concerned with the shear buckling stresses of cylindrical shells
are discusssd. The question of implicit boundary conditlons also
is conaidered.

INTRODUCTION

During a general theoretical investigation of the stablility
of curved sheet under losd, a method of analysis was developed
which appears to be simpler to apply than those in genseral use.
The dévelopment of this method is presented in two parts, of which
reference 1 1s the first anl the present paper the second. The
speciflc problems solved by this new method are treated in detall in
other papers. (See, For example, references 2 to 7.)

In reference 1 the stability of a stressed cylindrical shell
was analyzed in terms of Donnell's squation, e partial differentisal
eguation . for the radial displacement w, which takes into account
the effectes of the axisl displacement u and the circumferentisl .
displacement v. Reference 1l shows the mammer in which thils equation
can be used to obtain relatively easy soiuntions to a number of
problems concerning the stability of cylindrical shells with simply
supported edges. The resulte of the solution of this equation were
shown to take on a simple form by the use of the parameter k
(similar to the buckling-gtress coefficients for flat plates) to
represent the state of stress in the shell and the parameter Z
to represent the dimensions of the shell, where 2 is defined by
the following equationa:
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For a cylinder of length L
=L.2_ 1_2
21—

and for a curved panel of width b

Z=§§~ 1 -2
where
r radiuvs of curvature
t thickness of shell
and
M Poisson's ratio for material

The accuracy of Donnell's equation was established by comparisons
of the results found by its use with the results found by other
methods and by experiment.

In the simplest method that has been found for solving
Donnell's equation, the radiel displecement w 1s represented
by e trigonometric series expension. This method can be used to
great advantage for cylinders or curved panels with simply supported
edges but leads to incorrect results when applied uncritically
to cylinders or panels with clamped edges.

In the present paper an equation is derived which is equivalent
to Donnell's equation but is adapted to solution for clamped as
well as simply supported edges by means of trigonometric series.
This modified equation retains the advantages of Donnell's equation
in ezse of solution and simplicity of results. The solutlon of the
modified equation by means of the Galerkin method is explained, and
the results obtained by this approach in a number of problems
concerned with the shesr buckling stresses of cylindricel shells
are given in graphical form and discussed briefly. Boundary conditions
implied by the method of solution of the modified equation are
also discussed.
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S¥MBAOLS
a length of curved panel (longer dimension)
b width of curved panel (shorter dimension)
a3 35 b1 deflection coefficlents in trigonometric series
THL2
kg shear-—siress cecefficient E;;? for cylinder;
T£b2
—=- for curved panez)
Dr“ .
a: xtLe .
ky direct-axial -strees cosfficient =3 fcr cylinder;
- Dr
2
9T por curved panez\
D@ /

X

J

i, Js
n, p,

D

. 2 .
circumferential—stress coefficient <;%§%— for cylinder;

g tbe
-1—5— for curved pane%)
Dre

lyteral pressure
radius of curvature of cylindrical shell
thickness of cylindrical.shell

displacement in axial (x-) direction of point on shell
medisn surface

displacement in circumferential (y—) direction of point
on shell median surface

displacement in rediel direction of point on shell
medien surface; positive outward

axial coordinate

circumferential coordinate

32} integers

late flexural stiffress per unit length ———
? 12(1 - ;@)
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Young!s modulus of elasticity

Alryt!s stress function for median-surface stresses produced
.

Ll

by buckle deformation (:g;g, gtress in exial direction;_

3°F %
S—E, stress in circumferentlial direction; - 5;—35, shear
X

stres{)

length of cylinder
methematical operetors

shear—stress ratio; ratio of shear stress present to
oritical shesr stress when no other stress is acting

axlal-compressive—strass ratlio; ratio of direct axial

stress present to critical compressive stress when
no other stresa is actling

2 [

curvature perameter (Lr—t. / 1 — u2 for cylinder;
2 .

EE 1~ u2 for curved panel or long curved strié)

half wave length of buckles; measured circumferentially
in cylinders end axially in long curved strips

Poissonts ratio for material

applied axial stress, positive for compression

applied circumferential stress, positive for compression
applied shear stress

critical shear stress

4
2 3232 3 Lok 3k
operator (3§ix2 + ayé> = b + ;ax26y2 + ayh




NACA TN No. 1342 ‘ 5

8 . . p (2 P f)
v operator G)*(V) <bx2 +-B-§§>

vk inverse operator defined by equations

vh(dr) = @) = ¢

THEORY

Derivation of Modified Equation

The equation of equilibrium for a flat plate may be written

W%+tcx§-2-w-+2762"+dy§:2w>+1’=0 (1)

A2 dx dy

where p 1s lateral pressure. (This equation is equivelent %o
equation (197) of reference 8.)

For a cylindrically curved plate having a radius of curvature r,
the following pair of simmltaneous equations of equilibrium may be
written (as a generalization of equations (11l) and (10) of reference 9):

4 32y 3% Py £ O°F _
V7w + th . + 2Tax--—--ay+ Oy ——aye + D+ - _-Bxe =0 (2)
g _ E B _
» 02 0 (3)

where F 1s Alry's stress function for the median-surface stresses
produced by the buckle deformation (reference 10). Equation (2)

differs from equation (1) only in the addition of the term %‘ iz%— s
ox
which expresses the effect of the curvature. Equation (3) shows
that, unlike flat plates, cylindrical shells eXperience strstching
of the median surface when originally straight lines in the surface
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are bent slightly. Elimination of F Ybetween equations (2)
end (3) by suitable differentietions and additions gives the
following Bingle equation in w for the equilibrium of cylindrical

shells:

8 o) b 2w 3%y =
DVW'P%#“%V cxaxa 21'8 By+ cyay>+vp 0 (%)

Equation (4), which waes firset derived by Domnell (reference 11},
was treated in reference 1.

An alternative method for obtaining a single equation in w
for the equilibrium of & cylindrical shell is to solve equation (3)
for F and substitute the result into equation (2). This procedure
can readily be carried out in the following mamner. Differentiation
of equation (3) twice with respect to x gives

4 E O
=St 2
d°F

The symbolic solution of equation (5) for ie

2
Fr _py-bdty
> r

Substitution of this result into equation (2) gives

N .
T o Bb gk Ot P 32w 3w
D W+;-év 'é—x-E'i"beax + 2T axay yay2>+P‘o (6)

Equation (6) is simply egquation (4) modified by multiplication by
the operator v=*. In the present paper, equations (4) and (6)
are referred to as Donnell's equation and the modified equation,
reapsctively.

Advantages of Modified Equetion

One of the quickest and most convenient methods for obtaining
soluticns of flat-plate buckling problems to any desired degree of
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approximation uwses a Fourler series type of expansion for the deflection
surface w. Both Dommell's equation end the modified equation can

be solved by this method in the case of buckling problems involving
curved plates having simply supported edges.

As mentioned in the "Imtroduction,” however, Donnell's eguation
is not well adapted to solutlon by Fourier series of problems
involving the stability of shells with clamped edges. The cause of
the trouble eppears to be that the calculation of some of the high-
order derivatives found in Donnell's equation sometimes leads to
divergent trigonometric series when the edges are clamped. The
modified egquation, however, is appliceble to clamped-edge problems
a8 well as to problems involving simply supportsd sdges because
lower-order derivatives are involved.

In addition to its advantages in the solution of problems
involving shells with clamped edges, equation (6) has the additional
edvantage that each term hes a definite physical significance:

The flrst term gives the restoring force per unit area of the deflected
surface due tc bending and twisting stiffnesses; the second term

gives the restoring force per unilt arsa dne to stretching stiffness;
end the remsining terms give the deflecting forces per unit area

due to applied loads. Because of these advantages, the modified
equation was adopted for genersl use in references 2 to T.

Both Donnell's eguation and the modified equation result in
the same critical stresses for simply supported cylindricel shells,
and the two methods require essentially equivalent mathematical
processes. (See appendix.) The characteristics of sclutions by
means of Donnell's equation in the case of simply supported shells
(reference 1) - namely, the theoreticel cylinder parameters, the
simplicity of calculations and results, and the implied boundary
conditions on u and v - are characteristics, also, of solutions
by msens of the modified equation. The same characteristics s except
for a change in the implied boundary conditions om u and v, also
apply to solutlons of clamped-edge shell problems by means of the
modified equation. This change is discussed in the section entitled
"Boundary Conditions."

Solution of Modified Equation by Galerkin Mothod

An spproximate method of solving vibration and buckling problems
closely paralleling that of Ritz was introdiced in 1915 by Gelerkin.
(See, for example, references 12 and 13.) The main distinction between
the Ritz and Gelerkin methods is that the Ritz method begins with an
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energy expression; whereas the Galerkin method begins with an
equation of equilibrium. The Galerkﬁn method 1s readily adaptsble
to the solution of equation (6) and is now desoribed briefly.

Iet the equation of equilibrium be written

Q(w) +p =0 (7)

where p 1s lateral pressure end Q is some operator in x and ¥y
which for the purposes of this paper 1s taken to be linear. According
to the Galerkin method, the eguation may be solved by expanding

the unknown function w in terms of a sultable get of functions
fi(x)g (¥), each of which satisfies the boundary conditions but

not in general the equation of equilibrium:

— i ———

____;%r aijfi(x)SJ(y) | (8) )

=
1]

Substitution of this expression for w into equation (7) gives
the following equation:

Z 2_8-1 le:fi(x)SJ(Y)] +p=0 (9)

Because the functions fi(x)gJ(y) were chosen to satiefy the

boundary conditions rather than the equation of equilibrium,
equation (9) cennot, in general, be satisfied identically by any
choice of the coefficients &aij. These coefficients can be chosen,
however, to assure the vanishing of certaln weighted averages of
the left-hand side of squation ?9 The weighting functions used
in the Galerkin method are the original expansion functions, so
that the followlng simulitaneous equations for determining the
coefficlents aij are obtained:

Ez%ijaij =0 | (10) )
i

(m=l,2,3 cee n=l,2,3, noa)
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where

i i .
Brng g = I j Fu(x)en(y) Ql?i(x)sa(y)_l + y}dx dy (11)

The simulteneous set of linear algebraic equations in the unknown
cosfficients ajj (equation {10)), obtained by using the original

expansion functions as weighting functions, is ordinarily the same
set which would be found by the Ritz method, if the seme series
expension for w were used. A solution of any desired degree of
accuracy may therefore be cobtained by the Galerkin msthod.

In applying the Galerkin method to equation (6} by use of
Fourler series expansion for w, expressions of the type

L s o

1

v Y;: a1y sini‘—g-{sing—gl
J

mist be evaluated. The operator v'h, the inverse of V¥ l",

simply introduces into the denominstor of each teﬁm of the seriles
the expression that comee into the numerator if ie applied.
Thus,

ST g e 5 S
i J '

% gf(%)eaiéc%;ﬂa oo 55 win 1Y 2

This result may readily be verified by applying the operator Vl"
to each side of equation (12).

In writing equation (12) the quantity V‘l"f, as defined by
the eguation .

vhyo-¥ -
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wvas tacltly assumed to be unique. The quantity actuelly 1is not .
unique; any number of terms which vanish whon operated upon by Vl"

could be added to the right—thand side of equetion (12). The

omission of such terms makes the present analysis peresllel to the

analysis using Domnell!s equation (see reference 1)} and implies

certain bovndary conditions on u and v, vwhich are discussed

in a subsequent section entitled "Boundary Conditioms.”

Deflection Functions

Simply supported edges.— For simply supported cylindrical
ghells, thc following seriee expansions for w may be used to
represent the buckle deformation to any desired degree of accuracy
(in these functions, x is the coordinate in the axisl directiocn
end y, the coordinate in the circumferential direction):

(1) Rectangular curved plete (axial dimension a and
circumferential dimension 1)

[ fod

-
= > > mrx nay
RV S (23),
= n=

(2) Curved strip long in the axial direction (circumferential
width b and axial wave length 2\)
(a) Direct stresses only

2

w = sin ﬂ%z ap ein DL (14)

m=1

(b) Shear stress with or without addition of direct

stress : -
>~} [~
w = sin 1‘%2_ ap 8in BL + cos ZX E by sin L (15)
m= m=1 )
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(3) Complete cylinder (lemgth I and circumferential wave
length 21)

(2) Direct stresses only

w = gin -IT /. m sin X (16)

m=l

(b) Shear stress with or without sddition of direct
gtress

[=<] -

x ny Y_ nnx

w:sinlr/_amsinm—%—o+cos—x-[__bmsin-i— (l?)

ﬂ m:l

Clamped edges.— Probably the simplest method of treating
oylindricel shells with clemped edges is to employ the expansions
in equations (13) to (17) modified by substituting functions of the

type

P,(x) = sin X gin -’-;-15 = % cos Lm__-—zl.ln_x_ - cos Sm_%lﬁjl (18)

wherever functions of the type sin ’-E—TE appser, with & similar

substitution for functions of ¥y (all terms involving summation
subscripts m and. n e&re thus changed; terms involving A,

such as sain remain unchangsd). The functions @nu(x) form

x J
a complete set so thatfinite expansions for w of the type suggoested
Tor shells with clamped edges as well as those for shells with simply
supported edges may be used to represent the buckle deformation

to any desired degree of sccuracy.

Boundary Conditions

Simply supported edges.— Appendix D of reference 1 shows that,

if the buckling stress of a simply supported shell is found by means

of the expensions for w given in the preceding section entitled
"Deflection Function," the boundary or edge conditions implied for
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the median-surface displacements u ard v are zero displacement
along each of the edges of a cylinder or curved panel and free
displacemsnt norral to each edge. (Although the proof given used
equation (4), the proof could equally well have been based on
equation (6).)

The boundary conditions for simple support may thus be written,
at a curved edge (x = constant),

= B_E_ = .a.z_g =0 (19)
W = axe = Vs ayE =V __ -
and, at a straight edae (y = constent),
Fw 3°F .
w‘=é-;§=u=&§=0 (20)

Clemped edges.- By a method similar to that in appendix D
of reference 1, solutions using the Tunctions suggested in the
preceding section for the treatment of clamped edgps can be shown
to correspond to the boundary conditions - zero displacement normal
to an edge and free digplacement along an edge.

The boundary conditicns for clamped edges therefore become,
at a curved edge (x = constant),

W =

2
g_;=u=§f2=_o _ (21)

end, at a straight edge (y = constant),

4
%
(@]

!
]
<
||
|
1

(e2)

=
]
&
o
o
|
|

Discussion.- As mentionsd in reference 1, the boundary conditions
implied for u and v in the case of simply supported edges are
appropriate for cylinders or panels bounded by light buvlkheads or
deep stiffensrs, which are stiff in thelr own planes but may be
readily warped.out of their planes.
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The boundary conditions on u and v appropriate for a
clamped edge would seem to be zero di splacenent normal to the edge
and zero, rather than free, displacement along the edge. Comparison
of critical stresses for shells with clamped edges found by the
method in the present paper with critical stresses found by the
method In references 9 and 14, giving boundary conditions w = v = O,
however, indicates that the imposition of the sdded regulrement
of zero displacement along the edge ordinerily has very little
effect on the critical stresses.

A less satisfactory method for solving problems concerning
shells with clamped edges involves the use of functions of the type

m 4+ 2)ux
rlnsinmg'x +—-§sin(-——-)——

instead of those described by equation (18). In this method, the
functions used are those for simple support taken in such _comibina.tions
that the edge slope is zera. TUse of such functions leads to the ’
same boundsry conditions on u and v as wore described for simply
supported edges; at the sdge ¥y = constant, for example, the boundary
conditions become

W, o FF
w 5 u =5 0 (23)

The use of these functions to represent shells with clamped edges

is not recommended, however, for the following reasons: The associated
boundaxry cond.itions seenm 10 be artificilal and unlikely to be reproduced
even approximately in actual construction; the method leeds in some
oases to solutions that differ considerably from the solution for
ideal clemped-edge conditions in which w = v = O; and the solutions
obtained generslly converge rather poorly.

APPLICATIONS AND DISCUSSION

Among the more difficult shell-stability problems to treat
theoreticelly are those which involve shear stresses. In fact,
until 1934, when Donnell's paper on critical shear stress of a
cylinder in torsion was published (referencs 11}, such problems
wore generally regarded as impracticable to solve. In order to
illustrate the type of solution to be found by the method of analysis
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Just outlined and the effect of boundary conditions on critical
stresses, the results obtained for a number of shell stebility
rroblems involving shear streseses are reproduced and discussed
briefly here. The problems treated are summarized in teble I.

Critical shear stress of long curved strip.- The critical
shear stress for a long plate with transverse curvature is gilven
by the equation .

where kg 1s a dimensionless coefficlent, the velue of which
depends upon the dimensions of the etrip, Poisson's ratio for
the material, and the type of edge support. In figure 1 (fig. 1
of reference 2) the shear-stress coefficient kg is given for
plates with simply supported edges and with clamped edges. This
solution for simply supported edges coincides with that given by
Krom (reference 15).

As indicated in the previous section entitled '"Boundary
Conditions, " the solutlion corresponding to the boundery conditions
of equation (23) (dashed curve of fig. 1) is poorly convergent and
deviates appreciably from the results for completely fixed edges.
Pigure 1 shows this poor convergence in the limiting case of a flat
plats, for which the critical stress is independent of boundary
conditions on u and v. Even & tenth-order determinant led to
a result that is 7 percent above the true solution; whereas the
result using a fourth-order determinant obtained with the deflection
functions recommended for clamped edges is only 1 percent above.

In figure 2 (fig. 2 of reference 2) the solutions given in
figure 1 are compared with the resulte given by Leggett (reference 9)
for simply supported and clamped edges with u =v =0 at each
sdge. Throughout the range for which they are given, Leggett's
results for clamped edges differ only slishtly from those of the
present paper. On the other hand, the previously mentioned
discrepancy between the resulis for completely fixed edges
(w = v = 0) and those for the boundery conditions of equation (23)
(dashed curve) mey be inferred from this figure to be considerable
for large values of Z. A minimum meesure of this discrepancy is
the distance between the clamped -edge curves for v =0 and for
u =0 1in figurs 2, since Leggett's curve must alwayslie ebove the
curve for v = 0. '

The reason for the marked increase in buckling stress of simply
supported curved strips when the edges are restrained agalnst

circumferential displacement during buckling is discussed in reference 2.



NACA TN No. 1342 . 15

Critical shear stress of cylinder in torsion.- The critical
shear stress of & cylinder subjected to torsion Is glven by the
equation

72D
T = kg~
cr La-b

In figure 3 (fig. 1 of reference 3) the values of kg are given
for cylinders with simply supported edges (boundary conditions

of equation (19)) and cylinders with clamped edges (boundary
conditions of equation (21)). At high values of %, the values
of kg for thick cylinders are given by special curves for various
velues of '}E,/l - 42, as discussed in reference 1. At values

of Z greater than about 100 only a small incrsase in buckling
stress is caused by clamping the edges. The results indicated

in figure 3 are in very close agreement with Donnell's results for
the same problem, except in the range 5 < Z < 500 vwheye the
somewhat lower curves of the present paper represent & more accurate
solution.

Reference 1 showe that boundary conditlions imposed upon u
and v at the curved edges of & panel or cylinder have an simost
insignificant effect on the dbuckling stresses, whereas conditions
imposed on v &t the sitraight edges may be gquite important.
Comparison of figure 1, in which boundary conditions on straight
edges are considered, with figure 3, in which conditions on curved
edges are considered, indicates that & similar sltuation existe
with respect to restraint against edge rotetion. .

Critical shear stress of curved penel.- The values of kg
giving the critical shear stresses of simply supported curved
rectangular penels are glven in figures L and 5 (figs. 1 and 2,
respectively, of reference 4). The corresponding bowndary conditions
on u and v are zero displacement parallel to the edges and free
warping normal to the edges. Figure L4 indicates that as the
curvature parsmeter Z increases, the critical shear stresses of
panels having a circumferential dimension greater than the
axial dimension approech those for a cylinder. Pigure 5 indlicates
thet, as the cuxrvature perameter Z Increases, the critical shear
stresses for panels heaving an axial dimension gre&ter than the
circumferential dimension deviate more and more from the critlcal
shear stress for an infinitely long curved plate. Reference 4
shows that the reason for this deviation in figure 5 1s that at
high curvatures the buckling stresses of these panels, as well &s
those of figure L, approach those of the cylinder obtained by
extending the circumferentisl dimensione of the panels.
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The effects of boundary conditions in the limiting cases of
infinitely long curved strips (fig. 1) and of complete cylinders
(fig. 3) supggest that the curves of figure 4 are substantlally
independent of edge restraint at large values of Z but that the
curves of figure 5 would be ¢onsiderebly affocted by e change in
edge restraint.

Long curved strips under combined shear and direct axial stress.
Reference 5 showa thac the theoretical interaction curve for a
long curved strip under combined shear stress and direct axial stress
is approximately parabolic when the edges are elther simply supported
or clamped, regardless of the value of 2. This parabola is given
by the formula

Re® + By = 1

where Rg &and Ry are the shear-siress and compressive-stress
ratios, respectively.

Atv high values of Z  curved strips, like cylinders, duckle
at compressive stresses considerably below the theoretical critical
gstresses. In order to take this condition into account, certein .
modifications in the theoretlcal results are proposed 1n reference 5
for use in desipgn.

Cylinders under combined shear and direct axiasl strecs.-
The theoretically determined combinations of shear stress and direct
axial stress which cavse a cylinder with simply supported end
clamped edges to buckle are shown in figure 6 (fig. 1 of reference 6).
Considerable variation in the shepe of the interaction curves
occurs for low values of 2. PFor high valusee of Z the interaction
curves for elther simply supported or clamped edges are simllar to
the curve for Z = 30.

Because cylinders actually buckle at a small fraction of their
theoretical criticasl compressive stress, the theoretical interaction
curves of figure 6 cannot be expected to be in satisfactory agreement
with experiment when a very appreciable amount of compressicn is
present. TFor semlempirical curves and & check of avellable test
date, see reference 6. _
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CONCL.UDING REMARKS

A previous investigation showed how Fourler series type
gsolutions of Donnell's equation can be used to simplify greatly
the stabllity analysis of thin cylindrical shells with simply
supported edges. The present paper shows that the restriction to
simply supported edges can be removed by the introduction of a
new equation which is equivalent %o Donnell's equation but is better
adapted to solution by Fourier series. This modified equatlion can
be solved for the buckling stresses of curved sheet having elther
simply supported or clamped edges by established methods essentlally
equivelsnt to those in use for f£lat sheet. This approach permits
e slmple and straightforward solution to be given for a number of
problems previcusly considered rather formidable.

Langley Memorial Aeronauticael Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., March 20, 1947
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APPENDIX

COMPARISON OF RESULTS OBTAINED BY USING DONNELL'S EQUATION
AND THE MODIFIED EQUATION IN THE STABILITY ANALYSIS
OF SIMPLY SUPPORTED CURVED PANELS
Solution of Donnell's Eguation
Donnell's equation expressing the equilibrium of a curved

panel under medien-surface stresses can be written in general form
as

3w
byg

L
pvoy + B g—-r; + xtV + ot S P T+ cych

o = 0 (AL)

where x 1s the axial coordinate and y the circumferential
coordinate. Division of equation (Al) by D and the introduction
of the dimensionless stress coefficients ky, k., and kg, and
the curvature parameter Z resulis in the following equation:

L 22 32
B, 1222 3 b v ua%; ol v
e StV o 2"%2 5ot b2 52 = 0 (42)

where
b2t
=g
*x = oz
bt
kg =71
8" "%
b2t
k, = op=
¥ J ::ED
and.
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Equation (A2) can be represented by

Qfw) =0 (43)

where Q3 1s defined &s the operator

8 122.23 :12 11-32 2o R 1\:2 b2
VAT SR EY 3t eV 55t R 32

The eguation of sguilibrium (equation (A3)) is solved by using
the Galerkin methcd as described in the section entitled 'Theory."
In epplying this method the unknown deflsction w 1B represented in
terms of a set of functions {see equation (8)), each of which
satlsfies the boundary conditions but not in general the equation of
equllibriwm. A sultable set of Tunctions of this type, which
setisfles the boundary conditions for simpls support, is

o o0

=Zz%nsinm—g~xsinn-%x -(Al“)

m=1 n=}

where the origin is teken at a corner of the plate.  Substituting
in equations (10) and (11)

fpl{x) = sin mi_‘gc

gn(y) = sin 1_1_%3

Q"—'Ql

anf performing the integration over the whole plate (limits x =0, a;
¥ = 0, b) gives the set of equations
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B L Lo
: 2@?) 2plig ™
amn,@ambe \ 12228

' D2 - 5P 2
- 2 ac - es 2 2 a-
el (2 422 ) - £ (@2 4 m be)]
4 w ’_ 22 a - — A —— - -
2 2 & .
. 32kg &3 > (p M AT (A5)
2 13/ P2 - PR (2P - gB)
p=l q=

where m=-'l,2,3, vy n=l;2,3, D O angd. P and Q ‘take Only 't«hOBG
values for which m*t p and n t p are odd numbers.

Eguation (A5) représents an infinite set of homogeneous linear
equations involving the unknown deflection coefficlents egy- In

order for the deflection coefficients to have values other than
zero, that is, in order for the panel to buckle, the determinant of
the cecefficlents of the unknown derlection coefficients ays

must vanish. This determinant can be factored into two subdeterminents,

one involving the unlmown deflection coefficients 8y 4 for which

1 % J 18 odd and the other involving those coefficients for which
i *¥J is even. Buckling occurs, therefore, when either of the two
subdeterminants venishes. Only the buckling criterion involving
the even subdeterminant is treated here. This criterion is
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&13
m=1l, n=1 Myt
m=l, n=3 0
m=2, n=
m=3, n=1 0
m=3, n=3 o
where

" a.%f.& 22\ b @2)2 3_6_( :.2)2
+9Q+b2 5 1+9€§ | Moo 5@+h2 +25 o9+9

21

a13 &22 831 833
2
L 82
0 +9 Q#l-b 2) 0 0 v |
‘ 2
Ml3 “% Ql—-!-’-l-_z-%) o 1]

l—-’
2 2plte 2
2, 282 +l_e.z____@.__me@a+neg_)2
Qn "2 pt 12

L2880, o282
kynb261+nb2)2:)

Division of each column of the determinant in equation (A6)

by the proper

. . 2
12

= 0 (A6)
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glves the simplified equation

e12(HE) a5 (52 e () exa(9E) ess(90)
0

L
Nll 0 +9 0 eas
0 Ni3g —% 0 0 .
4 4 i 36
+ = - N - +
9 5 22 5 25
L
0 o *5 . N31 0 =0
36 : ;
0 0 +2-§ 0 N33 (AT)
where
2.3 |, o .k 2
. = —f-u-:: ...3 ?. + n& g‘?j J.?Z ma - - kxmz - kyn?- —
32kye pe n’+‘b"*(m£ 2 ad)?- ve
- N

The vanishing of this determinant is the criterion for the symmeirical
buckling of the shell. The same buckling criterion results from

the use of the modified equation, as is shown in the following
gection.

Solution of Modifjied Eguation

The modified equatlion expressing the equili'brium'of a curved
panel under median-surface stresses in general form 1s
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l|.
DV)'I’ + E--b V-Ll' g-.ﬁ' + O'x'b iz + ET'baza‘g + Uyt gyz_)_r =0 (As)

Division of equation (A8) tv D and simplification of the result
gives the following equatiun: o

2 Iy
12z° _-b 37w 2 Fu 7= 32w 22 3w _
Vh'w+—-£—_b- \v4 ax—jl+1§x 28—-§+2k9_-baaxay+kyb2 aye 0 (a9)
Egquation (A9) can be represented by
Qy(w) =0 (A10)
where Q, 1s defined as the operator
L, 1272 ol ok 7= 2 e 2 e 2
v - o A=l LS > Sl Lonl il
+—'b-E Bxl*+kxb2812+2ksb23xay+ky'b25y2

By use of the Galerkin method and by use of the expression for w
given in equation (Al), the following set of equations enalogous
to equations {A5) are obtainsd

8nm <m2 + 02 8'2>2 + 1222111,"'&)4'
b2 ki 2 o p2\2 T
= (m + %é)

o a. mpq,
R ﬂ2b3 Xz P (- p2) (a2 - g?)

p=l q=1 (A11)

wvhere m=1,2,3, ..., n=1,2,3, ..., and p and ¢ ‘take only those
values such thet m * p and n + q are odd numbers.
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As in the cese of the solution of Domnell's equation, the
stability determinant represcnting equations (All) can be Factored
into an even and an odd subdeterminent. The even one l1s

11 813 822 831 833 ..

-1, n= L
mel, o=l | N; 0 42 0 0 .
mel, 2=3 | 0  Ny3 ~% ) 0
i u L 36
=2, n=2 | +3 L B S .
m n 5 12 5 25 =0 (A12)
m=3, n=l | O 0 -—,15-’ Ny 0
6 .
= = 0 0 +38 0 N
3, n=3 5 33

The stability determinant (equation (Al2)) obtained from the
modified equation is identical with the simplified stability
determinant (equation (AT)) obteined by use of Donnsll's equation.
This identity holds for the odd as well as the even determinants.

Although the stability determinants obtained by use of the two
eguations are identical and yield identical buckling loads, the
determinant in equation (AT} consists of the coefficients of

: 22 .
&ij(é? + 42 %é) » Wheroas the determinant in equation (Al2)

consigts of the coefficients of ay 3 Accordingly, although the
buckling loads found by the two methods are the seme, the buckle
patterns are different. Of the two buckle patterns the one found
by the use of the modified equation 1s belisved to be correct.
This conclusion has been vorified for the limiting case of a
flat plate (2=0).
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TABIE I.- IRDEX OF PROBLEMS TREATED

S
———fpens?

Problem ¥igure Reference Edge Condition
Simply supported (us0, vy0)
1 2 Clamped (ug0, v=0)
Clamped (u=0, o)
Simply supported (u=0, vy0)
2 Clamped (ug0, v=0)
Clamped (u=0, v¥0)
2
9 Simply supported (umve0)
(Loggett) Clamped (umved)
8 3 3 Simply supported
Clamped
e’
b SESS
4@’ L L Simply supported
——
” L 5 )-8 Simply supported
1ml Kot 5 Simply supported
shown Clamped
b4
% 6(a) [ Simply supported
N 6(p) 6 Clemped
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Figure 1.- Critical-shear-stress coefficients for a long curved strip,
(Fig. 1 of reference 2,)
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Figure 2.- Comparison of Leggett’s solutions with present solutions for
critical-shear-stress coefficients of a long curved strip. (Fig. 2 of
reference 2.)
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_Figure 3.- Critical-shear-stress coefficients for cylinders in torsion. o

(Fig. 1 of reference 3.)
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Figure 4.- Critical-shear-stress coefficients for simply supported
curved panels having circumferential dimension greater than axial
dimension, (Fig. 1 of reference 4.)
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Figure 5.- Critical~-shear-stress coefficients of simply supported
curved panels having axial dimension greater than circumferential
dimension. (Dashed curve‘estimated.) (Fig. 2 of reference 4.)
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Fig. 6 NACA TN No. 1342
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(b) Clamped edges.

Figure 6.- Critical combinations of shear-stress and direct-axial-
stress coefficients for cylinders. (Fig. 1 of reference 6.)



